A brief look at the new Protobuf APIv2 for Golang
There has been a release of a new protobuf API v2 for Golang which provides an entirely different API surface which in turn means that it is backward incompatible. But there are good reasons for that.
Many want to access the generated proto Message
programmatically and without knowing the concrete type at runtime. The release post describes one such use case, but there exists many in the wild.
For example, generating a table schema based on a provided proto Message
, which coincidentally shares similarity with my use case.
So, I recently tried to see if we can migrate to use the new API. Since it is fairly new, there can be a bit of confusion around the whole go-protobuf ecosystem about the support of APIv2.
This post is a result of my efforts to investigate projects(that I regularly use) which need upgradation and a little fun experiment with protoreflect
API for minor template-generation.
A very good overview of this new release is on the official Protobuf Go reference FAQ page. I highly recommend going through them.
Import Path
Most notably, the new import path for APIv2 is changed to google.golang.org/protobuf
vs the old one github.com/golang/protobuf/protoc-gen-go
.
As mentioned in the original release post, the old API v1 versions will start from the current v1.3.5
where as the new APIv2 is starting from v1.20.0
.
Also protoc-gen-go
APIv1 is implemented in the terms of APIv2 at version 1.4.0
which means just upgrading to the new versions of old API will allow the programs to use the new API.
Gotchas(that I could found)
If your project uses a external protobuf configuration/management tool like prototool
, it might take some time to get them to support the new APIv2. For example with prototool, the changed behaviour on new API w.r.t. go_package
creates problems.
If using gRPC with protobuf, only old protoc-gen plugin will support the generation of gRPC stubs for a while and not the new one.
Also, when using the new API, gRPC version must be upgraded to 1.27.0
If using extra whistles like grpc-gateway
, those might be still on their way to upgrade and can prove to be non-trivial.
Using protoreflect
Now, onto the fun part.
New APIv2 provides a revamped reflection API that allows access to the Message
values as per the protocol buffer type system.
The release post does a good job on describing a use case where we need to iterate through all populated fields of a proto message.
But, what if I wanted to iterate through all fields of a Message
irrespective of whether they are populated or not and want to infer their proto type information.
For example, I want to map protobuf type system to another type system, of course for reasons ;)
Let’s say I’ve a template that looks like this:
var caseTmpl = `
// declared field name as in proto
case %s:
// (proto generated name) => (a mapped type name)
message.%s = anotherField.(%s)
`
Here message
is a protobuf Message and anotherField
is a field that should be assigned to the message but type signature of the field is different.
The first basic attempt:
func generate(message proto.Message) {
// Returns all Fields/`FieldDescriptors` from the `MessageDescriptor`
fds := message.ProtoReflect().Descriptor().Fields()
for i := 0; i < fds.Len(); i++ {
fd := fds.Get(i)
//short name
fieldName := string(fd.Name())
// json name
protoField := strings.Title(fd.JSONName())
// the template is defined above and we pass the string arguments
// fd.Kind() returns basic Kind/type for the field
fmt.Printf(caseTmpl, fieldName, protoField, fd.Kind())
}
}
We access the MessageDescriptor
with the help of the new API and get the list of all fields, which has the type FieldDescriptors
.
FieldDescriptors
is basically a container type for FieldDescriptor
.
FieldDescriptor
has all the information regarding the name, type of the underlying field, which we can use to pass into the template.
I relied on the fd.Kind()
’s String implmentation to get the type name. We can also use a map on the type name itsef if its signature in anotherField
is called differently.
This works fine for a very simple proto definition(in terms of type richness).
message Customer {
uint64 id = 1;
string another_identifier = 2;
}
and we get output:
case id:
message.Id = anotherField.(uint64)
case another_identifier:
message.AnotherIdentifier = anotherField.(string)
However if we put a nested Message
inside the proto definition, the Kind
will print them as anotherField.message
which is not what we want.
Well known types are also an embedded Message
type.
Next version,
var MapWellKnownTypesToGoTypes = map[protoreflect.FullName]string{
"google.protobuf.BoolValue": "uint8",
"google.protobuf.Timestamp": "time.Time",
}
func generate(message proto.Message) {
fds := message.ProtoReflect().Descriptor().Fields()
for i := 0; i < fds.Len(); i++ {
fd := fds.Get(i)
fieldName := string(fd.Name())
protoField := strings.Title(fd.JSONName())
// this _can_ mean WKTs or nested messages
if fd.Kind() == protoreflect.MessageKind {
typeStr, wkt := MapWellKnownTypesToGoTypes[fd.Message().FullName()]
if wkt {
fmt.Printf(typeStr)
// WKTs assignment requires a bit more sophistication but is possible. I'll leave that as an exercise.
} else {
m := message.ProtoReflect()
// call it recursively on the nested Message
// but we need to catch field marked as `repeated`
if fd.Cardinality() != protoreflect.Repeated {
generate(m.Get(fd).Message().Interface())
} else {
repeatedElem := m.Get(fd).List().NewElement()
// this should be only be possible for nested message fields
generate(repeatedElem.Message().Interface())
}
}
} else if fd.Kind() == protoreflect.EnumKind {
// enums can have type `int8`
fmt.Printf(caseTmpl, fieldName, protoField, "int8")
} else {
fmt.Printf(caseTmpl, fieldName, protoField, fd.Kind())
}
}
}
This works for nested Message
fields, but I also added some edge cases for repeated
Message
field and a separate case for Enum
.
An example:
message Embed {
string info = 1;
}
message Customer {
uint64 id = 1;
string another_identifier = 2;
Embed embedded = 3;
}
and we get output :
case id:
message.Id = anotherField.(uint64)
case another_identifier:
message.AnotherIdentifier = anotherField.(string)
case embedded:
message.Embedded = anotherField.(string)
However note that this doesn’t pick the proper fieldName
in the nested message case.
We can fix that by picking the Parent
name from FieldDescriptor
.
So the final version looks like below.
func generate(message proto.Message) {
fds := message.ProtoReflect().Descriptor().Fields()
for i := 0; i < fds.Len(); i++ {
fd := fds.Get(i)
fieldName := ""
protoField := ""
// in case of nested message
parentName := string(fd.Parent().Name())
if parentName != "" {
fieldName = parentName + "_" + string(fd.Name())
protoField = string(fd.Parent().Name()) + "." + strings.Title(fd.JSONName())
} else {
fieldName = string(fd.Name())
protoField = strings.Title(fd.JSONName())
}
// this _can_ mean WKTs or nested messages
if fd.Kind() == protoreflect.MessageKind {
typeStr, wkt := MapWellKnownTypesToGoTypes[fd.Message().FullName()]
if wkt {
fmt.Printf(typeStr)
// WKTs assignment requires a bit more sophistication but is possible. I'll leave that as an exercise.
} else {
m := message.ProtoReflect()
// call it recursively on the nested field
if fd.Cardinality() != protoreflect.Repeated {
// ugh
generate(m.Get(fd).Message().Interface())
} else {
repeatedElem := m.Get(fd).List().NewElement()
// this should be only be possible for nested message fields
generate(repeatedElem.Message().Interface())
}
}
} else if fd.Kind() == protoreflect.EnumKind {
// enums can have type `int8`
fmt.Printf(caseTmpl, fieldName, protoField, "int8")
} else {
fmt.Printf(caseTmpl, fieldName, protoField, fd.Kind())
}
}
}
And that’s it !
I hope this gives a bit more insight into the new protoreflect
API. There is a lot of the API surface that I haven’t touched but I’ll leave that for another post.